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We describe a method to express the susceptibility and higher derivatives of the free energy in terms of the
scaling variables(Wegner’s nonlinear scaling fields) associated with the high-temperature(HT) fixed point of
the Dyson hierarchical model in arbitrary dimensions. We give a closed form solution of the linearized
problem. We check that up to order 7 in the HT expansion, all the poles(“small denominators”) that would
naively appear in some positive dimension are canceled by zeros(“small numerators”). The requirement of
continuity in the dimension can be used to lift ambiguities which appear in calculations at fixed dimension. We
show that the existence of a HT phase in the infinite volume limit for a continuous set of values of the
dimension, requires that this mechanism works to all orders. On the other hand, most poles at negative values
of the dimensional parameter[where the free energy density is not well-defined, but renormalization group
(RG) flows can be studied] persist and reflect the fact that for special negative values of the dimension,
finite-size corrections become leading terms. We show that the inverse problem is also free of small denomi-
nator problems and that the initial values of the scaling variables can be expressed in terms of the infinite
volume limit of the susceptibility and higher derivatives of the free energy. We discuss the existence of an
infinite number of conserved quantities(RG invariants) and their relevance for the calculation of universal
ratios of critical amplitudes.
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I. INTRODUCTION

In many problems, one faces the challenge of deriving the
macroscopic consequences of a microscopic theory. As we
look at the problem at increasingly large scales, a sequence
of effective theories appear and under some appropriate con-
ditions, an infinite volume limit can be taken. A general
method that allows us to construct these flows in the space of
theories is the renormalization group(RG) method[1]. The
study of some RG fixed points and of the linearized flows
close to these fixed points has produced a successful picture
of the universal behavior in second order phase transitions.
On the other hand, controlling the RG flows beyond the lin-
earized approximation and calculating the related nonuniver-
sal behavior are more difficult issues. This is unfortunately
necessary to calculate the critical amplitudes.

As a first step, one can deal with the nonlinear RG flows
for simplified models where the RG transformation can be
implemented without major technical difficulty. One possi-
bility is to use approximate versions of the exact RG equa-
tions [2,3] such as the local potential approximation[4]. An-
other possibility to address nonlinear questions[5–7] is to
use Dyson’s hierarchical model[8,9]. In the following, we
use this lattice model for which the block-spin method can
be easily implemented. This model is briefly reviewed in
Sec. II. Other approaches of nonlinear aspects of the RG
flows can be found, for instance, in Refs.[10–13].

In the context of ordinary differential equations, a stan-
dard method[14] to go beyond the linearized approximation

in the vicinity of a fixed point, consists in constructing a new
system of coordinates where the equations become linear.
However, this type of procedure is often plagued with the
“small denominator problem” initially encountered by
Poincaré in his study of perturbed integrable Hamiltonians.
In the context of the RG method, these new coordinates are
called the scaling variables(or the nonlinear scaling fields)
and were first introduced by Wegner[15]. Recently, we have
proposed anab initio calculation of the critical amplitudes in
the high-temperature(HT) phase of this model[7]. In this
calculation, the critical amplitudes are RG invariant made
out of the nonlinear scaling variables associated with Wil-
son’s nontrivial IR fixed pointand the nonlinear scaling vari-
ables associated with the HT fixed point. In this approach,
the two fixed points are in some approximate sense dual[16]
to each others. The scaling variables associated with Wil-
son’s fixed point have been extensively discussed, but much
less is known about those associated with the HT fixed point.
We emphasize that being able to use both kind of variables is
quite convenient for the study of the RG flows in the inter-
mediate region between the two fixed points.

At first sight, the construction of the scaling variables
associated with the HT fixed point is impossible forD=3
and more generally for rational values ofD, because some of
the denominators are exactly zero. However, a numerical
study inD=3 showed[17] that in all of the 36 zero denomi-
nators considered, a zero numerator miraculously appears.
This strongly indicates the existence of a general mechanism
enabling us to overcome the small denominator problem.

In this paper, we show that such a mechanism exists and
is closely related to the existence of the infinite volume limit
of the susceptibility and higher derivatives of the free energy.
In addition, we address the issue that whenever zero numera-
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tor and denominator appear at the same time, the coefficients
of the nonlinear expansion appear to be undetermineds 0

0
d.

We show that this indeterminacy can be lifted by a procedure
similar to the dimensional regularization[18] used for the
evaluation of Feynman diagrams. It should however be em-
phasized that it is not used here to take care of a UV prob-
lem, since we will be working with a lattice model. We will
consider the construction of the HT scaling field in arbitrary
dimensions. In our construction, the zero denominators ap-
pear as poles at particular dimensions and one can study the
mechanism of cancellation close to a pole but not exactly at
the pole.

For Dyson’s hierarchical model, the dimensionD appears
in a continuous parameterc=21−2/D introduced explicitly in
Sec. II. The infinite volume limit is well defined for
0,c,2, or in other wordsD.0. The linear variables asso-
ciated with the HT fixed point are introduced in Sec. III. A
closed form expression for the linear transformation which
diagonalizes the linear RG transformation is given in arbi-
trary dimensions. The restriction to the firstlmax of these
variables can be interpreted as a HT expansion. In Sec. IV,
we expand the linear variables in terms of the scaling vari-
ables. We show that up to order 7 in the HT expansion, the
poles corresponding to zero denominators in positive dimen-
sions s0,c,2d are exactly canceled by a zero at the nu-
merator. The coefficients of the expansion are then unam-
biguously defined rational functions ofc with no poles for
0,c,2. Their poles appear only at negative values of the
dimension where the statistical mechanics model does not
have a well defined infinite volume limit.

The linear variables are linear combinations of the aver-
age values of the total fieldox fx. In Sec. V, we use this fact
to reexpress the connected parts of the average values of the
total field divided by the volume, or in other words, the
susceptibility and the higher derivatives of the free energy
density, in terms of the scaling variables. We show that up to
order 7, the linear contribution is theonly leading term in the
infinite volume limit. In Sec. VI, we explain why this should
happen to all orders. In Sec. VII we explain why it guaran-
tees the cancellations discussed in Sec. IV to all orders.

Having showed that it is possible to construct a solution
of the RG flows in the HT phase, we then need to calculate
the initial values of the scaling variables in terms of the local
measure(for instance, a Ising measure or a Landau-Ginzburg
measure) used to specify the statistical mechanics model.
This amounts to inverting the previous expansions. In Sec.
VIII, we construct the scaling variables in terms of the linear
variables and show that the coefficients are free of poles for
0,c,2. We also show that, up to numerical constants, the
initial values of the scaling variables are the infinite volume
limit of the susceptibility and higher order derivatives of the
free energy density. This concludes our construction of a
complete solution of the RG flows in the HT phase. To be
precise, we have shown that various expansions can be con-
structed order by order without encountering any small de-
nominator problems and that it is possible to study empiri-
cally the convergence of these series. In Sec. IX, we show
with an example how everything we have done can be used
to calculate the HT expansion at finite volume. We also
check explicitly that it yields results in agreement with cal-

culations performed using independent methods[19]. In Sec.
X, we discuss the existence of an infinite number of con-
served quantities and their relevance for the calculation of
universal ratios of critical amplitudes.

II. DYSON’S HIERARCHICAL MODEL

In this section, we remind some basic facts about Dyson’s
hierarchical model that will be needed in the following. For
more details, the reader may consult Refs.[20,21]. We con-
sider fields located at 2nmax sites labeled withnmax indices
xnmax

,… ,x1, each being 0 or 1. We divide the 2nmax sites into
two blocks, each containing 2nmax−1 sites. Ifxnmax

=0, the site
is in the first box, ifxnmax

=1, the site is in the second box and
so on. The nonlocal part of the energy reads

Hnl = −
1

2 o
n=1

nmaxS c

4
Dn

o
xnmax

,…,xn+1
S o

xn,…,x1

fsxnmax
,…x1dD2

. s1d

The partition function for a constant sourceJ sor external
magnetic fieldd reads

ZsJd = p
x
E dfxWsfxdexpS− bHnl + Jo

y

fyD . s2d

We call Wsfxddfx the local measure. The most common
examples are the Ising measureWsfd=dsf2−1d or the
Landau-Ginzburg measureWsfd=exps−Af2−Bf4d. The
RG transformation consists in integrating over the fields
keeping their sum constant in increasingly large boxes.
After each integration the fields are rescaled by a factor
Îc/4 in order to keep the form ofHnl identical, and the RG
transformation generates a flow in the space of local mea-
sures.

Note that for a constant configuration where all the fields
take the same valuef̄, the nonlocal part of the energy takes
the value

Hnlsf̄d = − 2nmaxsf̄d21

2 o
n=1

nmaxS c

2
Dn

. s3d

In the infinite volume limit snmax→`d, the sum converges
only for ucu,2. Proofs of the existence of the thermodynami-
cal limit for a Ising measuref22,23g require that the energy
does not scale faster than the number of sites. This means
ucu,2 for the model considered here.

In the following, we will make a change of variables in
order to get rid ofb in front of Hnl in Eq. (2) and reabsorb it
in the local measure. Our main object of study will be the
generating function(obtained by Fourier transforming the
local measure)

Rnskd = 1 +an,1k
2 + an,2k

4 + ¯ , s4d

with
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an,l = s− bdl 1

2l!
S c

4
DlnKS o

2nsites

fxD2lL . s5d

The RG transformation can be summarized in terms of the
recursion formula

Rn+1skd = Cn+1expF−
1

2

]2

] k2GFRnSÎck

2
DG2

. s6d

We fix the normalization constantCn so thatRns0d=1. Note
that compared to Eq.s2.5d of Ref. f21g, there is no factorb in
the argument of the exponential becauseb has been reab-
sorbed ink and thean,l according to Eq.s5d.

It is important to remember that in the notationan,l, the
first index refers to the number of RG steps and the second to
the powers of the total field. Sometimes, the number of RG
stepsn will be omitted, sometimes the vector indexl will be
replaced by boldface notations. We use the parametrization
c=21−2/D such that a free massless field scales in the same
way as in a usualD-dimensional theory. For reference, Dys-
on’s parametrization[8] was c=22−a. The logarithm ofR
generates the connected zero-momentum Green’s functions
at finite volume. We emphasize that in the following, the
temperature dependence has been absorbed in the initial
R0skd. For instance, in the case of an Ising measure,R0skd
=cossÎbkd.

In the HT phase, polynomial truncations of orderlmax in
k2 provide rapidly converging approximations[6,20]. The
RG flows can be expressed in terms of a quadratic map in a
lmax dimensional space

an+1,l =
un,l

un,0
, s7d

with

un,s = Gs
mnan,man,n, s8d

and

Gs
mn = sc/4dm+n s− 1/2dm+n−sf2sm + ndg!

sm + n − sd ! s2sd!
s9d

for m+nùs and zero otherwise. We use “relativistic” nota-
tions. The greek indicesm and n go from 0 to lmax, while
latin indicesi, j go from 1 to lmax. Repeated indices mean
summation unless specified differently. With the normaliza-
tion of Eq. s7d, an,0=1 for anyn and is not a dynamical
variable. Note that a truncation to orderlmax is always im-
plicit in the following. However, for reasons that will be
explained in the following section, there is no explicit depen-
dence inlmax.

III. THE LINEAR RG TRANSFORMATION

In this section we discuss the linearized RG transforma-
tion near the HT fixed pointai =0 for all i ù1. For small
departure from the HT fixed pointdan,i the linear RG trans-
formation reads

dan+1,i . Mi
jdan,j , s10d

with

Mi
j = 2Gi

j0 = 2S c

4
D jS−

1

2
D j−i s2jd!

s2id ! s j − id!
, s11d

for i ø j and zero otherwise.
The diagonalization ofM is not too difficult because of

its upper triangular form. The spectrum is given by the diag-
onal elements:

lsrd = 2sc/4dr , s12d

in agreement with Ref.f5g. We need to constructR, a matrix
of right eigenvectors, such that

Ml
iRi

r = lsrdRl
r s13d

swith no summation overrd. For convenience, the columns
of R are ordered as the eigenvalues, 0,c,4 being as-
sumed. We will then introduce the linear coordinateshn,l
defined by

an,l = Rl
rhn,r , s14d

and which transform as

hn+1,r . lsrdhn,r s15d

in the linear approximation. The matrixRi
r and its inverse

are also upper triangular. This implies thathn,l is of orderbl,
just as an,l is. We will fix the normalization of the right
eigenvectors inR in such way that all the diagonal elements
are 1. This guarantees thathn,l =an,l +Osbl+1d.

Before entering into the technical details of the construc-
tion of R, an important consequence of the upper triangular
form of M should be noticed. The eigenvectors and eigen-
values ofM are independent of a possible truncation. In
other words, the fact thatR is upper triangular means that
the polynomial truncations ofR to orderk2lmaxmentioned in
Sec. II are indeed a projection in the subspace spun by the
first lmax eigenvectors ofM.

We now constructR. We first notice that forj . i,

Ri
j = S c

4 − c
D j−i

Pi
j , s16d

with Pi
j c-independent For indices no larger than 7, the en-

tries of P are

1
1 6 45 420 4725 62370 945945

0 1 15 210 3150 51975 945945

0 0 1 28 630 13860 315315

0 0 0 1 45 1485 45045

0 0 0 0 1 66 3003

0 0 0 0 0 1 91

0 0 0 0 0 0 1

2 .

The matrixP has remarkable properties

Pi
i+1Pi+1

i+2 = 2Pi
i+2 s17ad
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Pi
i+1Pi+1

i+3 + Pi
i+2Pi+2

i+3 = Pi
i+1Pi+1

i+2Pi+2
i+3 s17bd

and higher order ones that as we will see are related to the
very simple form of the inverse matrix. We can condense
these relations into the more compact recursion

Pi
i+mPi+m

i+m+q = Sm+ q

q
DPi

i+m+q. s18d

This implies the closed form expression

Pi
j = S−

1

2
D j−i s2jd!

s2id ! s j − id!
. s19d

Using Eqs.(16) and (19), it is easy to check that, as a
consequence of the binomial formula, we have provided an
exact solution of Eq.(13) with the required normalization
(ones on the diagonal). Similarly, one can show that the in-
verse has the very simple form

sR−1di
j = s− 1d j−iRi

j . s20d

This equation does not hold for an arbitrary upper triangular
matrix. It implies the identitiess17d and many others.

IV. EXPRESSION OF THE LINEAR VARIABLES IN TERMS
OF THE SCALING VARIABLES

In this section, we express the linear variableshl in terms
of the (nonlinear) scaling variablesyl for which the approxi-
mate multiplicative transformation of Eq.(15) becomes ex-
act. If we uselnsyld as our new coordinates, the RG flows
become parallel straight lines. All the dynamics is then con-
tained in the mapping that we now proceed to construct.

We first rewrite the RG transformation in thehl coordi-
nates. Starting with the basic Eq.(7), we replacea0 by 1 and
al by Rl

php. This yields

hn+1,l =
lsldhn,l + Dl

pqhn,phn,q

1 + 2D0
p0hn,p + D0

pqhn,phn,q

, s21d

with coefficients calculable from Eq.s9d. For instance

Dl
pq = sR−1dl

l8Gl8
p8q8Pp8

p Rq8
q .

In general, upper roman indices transform withR and the
lower ones withsRd−1. By construction, the linear transfor-
mation is diagonal.

We then introduce the expansion

hl = yl + o
i1,i2,. . .

sl,i1i2. . .y1
i1y2

i2 . . . , s22d

where the sums overi ’s run from 0 to infinity in each vari-
able with at least two nonzero indices. In the following, we
use the notationi for si1, i2, . . .d. More generally, vectors will
be represented by boldface characters. The unknown coeffi-
cientssl,i in Eq. s22d are obtained by matching two expres-
sions ofhn+1,l, one obtained from the RG transformation of
the hl given in Eq.s21d, the other obtained by evolving the
scaling variables according to the exact multiplicative trans-
formation

yn+1,l = lsldyn,l . s23d

The matching conditions can be expressed as:

hn+1,lfhnsydg = hn,lsl1yn,1,l2yn,2, . . .d. s24d

and yield the conditions

sl,i =
Nl,i

Dl,i
. s25d

with

Nl,i = o
j+k=i

S− Dl
pqsp,jsq,k + sl,jp

m

lsmd
jm 2D0

p0sp,kD
+ o

j+k+r=i
sl,jp

m

lsmd
jm D0

pq,sp,ksq,r . s26d

and

Dl,i = lsld − p
m

lsmd
im . s27d

For a given set of indicesi, we introduce the notation

Iqsid = o
m

immq. s28d

One sees thatI0 is the degree of the associated product of
scaling variables andI1 its order in the HT expansionssince
yl is also of orderbld. Given that all the indices are positive
and that at least one index is not zero, one can see that ifj
+k = i thenIqsj d,Iqsid andIqskd,Iqsid. Consequently, Eq.
s26d yields a solution order by order inI0 or in I1 ssince the
right-hand side is always containssl,i of lower order inI0 or
I1d provided that none of the denominatorsDl,i are exactly
zero. The main goal of this paper is to investigate what hap-
pens when some of the denominators happen to be exactly
zero.

Using the explicit expression of the eigenvalues Eq.(12),
we can rewrite the denominators as

Dl,i = 2S c

4
Dl

− 2I0sidS c

4
DI1sid

. s29d

Using the parametrizationc=21−2/D, the zero denominators
appear when

D − lsD + 2d = DI0sid − sD + 2dI1sid. s30d

Given thatIq are integers, this can only occur at some ratio-
nal values ofD. Ignoring temporarily this set of values, we
can say that for generic values ofc, the denominator is not
zero. Following the basic idea of dimensional regularization,
we will then perform, order by order inI1, the construction
of sl,i for a generic value ofc and discuss the limit wherec
takes some special value at the end of the calculation.

We now determine the range of values ofI0 andI1 rel-
evant for our problem. In Eq.(22), we have assumed that
hl .yl for sufficiently small values of the scaling variables.
The linear problem is completely solved and we may assume
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I0sid.1. In addition, since bothhl andyl are of orderbl, we
need I1sidù l. At lowest nontrivial order inb, we have
Ilsid= l, and

Dl,i = S c

4
Dl

s2 − 2I0sidd.

In this special case, the only possible poles are atc=0. How-
ever, the factorsc/4dl at the denominator is exactly canceled
by the same factor appearing in theDl

pq in Eq. s21d. More
precisely

hn+1,l = S c

4
DlS2hn,l + o

p+q=l

hn,phn,qD + Osbl+1d. s31d

Using this, it is not difficult to prove by induction that if
Ilsid= l,

sl,i = p
m

1

im!
. s32d

It is thus clear that at the lowest nontrivial order, the coeffi-
cients have no singularities.

We now discuss the caseI1sid. l. We have in general

Dl,i = 2S c

4
Dl

sccrit.dl−I1sidTl,i , s33d

with

Tl,i = sccrit.
I1sid−l − cI1sid−ld, s34d

and

ccrit. = 4 3 2f1−I0sidg/fI1sid−lg. s35d

One should always keep in mind thatccrit. is a function of
both l and i. Inspection of Eqs.s9d and s16d shows that the
numerator has a factorcI1sidsc−4dl−I1sid. Consequently

sl,i = S c

c − 4
DI1sid−l

Ql,iscd, s36d

where Ql,iscd is a rational function ofc with no poles or
zeroes at 0 or 4. We do not have a compact formula for these
rational functions, however it is easy to calculate them using
symbolic manipulation programs.

Naively, we would expect thatQl,iscd has a factorTl,iscd at
the denominator and other poles inherited from thesl,i of
lower orders. The values ofQl,iscd up to orderb4 are shown
in Table I. The naive expectations concerning the poles are
only observed in 9 cases out of the 17 considered. In the 8
other cases, some cancellations occur. For instance, there is
no sc+2d at the denominator ofQ1,s3,0,. . .d. More importantly,
wheneverccrit.,2, we observe a cancellation of all the fac-
tors appearing inTl,iscd. This occurs, for instance, for
Q2,s3,0,. . .d, where the factorsc−1 cancel. If we do the calcu-
lations explicitly using Eq.(26), we obtain five terms at the
numerator:

N2,s3,0,. . .d =
− 11c3

64
−

3c3

8s− 4 +cd
+

c3

4s− 4 +cds− 2 +cd

+
15c4

64s− 4 +cd
+

c4

8s− 4 +cds− 2 +cd
,

while the denominator reads

TABLE I. Values ofQl,iscd ,ccrit. andTl,iscd defined in the text.

l pm ym
im Ql,iscd ccrit. −Tl,iscd

1 y1
2 2+c/−2+c 2 −2+c

1 y1
3 −s4−20c+c2d/2 s−2+cd2 2 −4+c2

1 y1 y2 −3 s−40+c2d/−8+c2 2 Î2 −8+c2

1 y1
4 −120+156c−18 c2+c3/2 s−2+cd3 2 −8+c3

1 y1
2 y2 3s−11520−640c+1184c2+288c3+40 c4−26 c5

+3 c6d/ s−2+cds−8+c2ds−16+c3d
2 21 / 3 −16+c3

1 y2
2 1536/−32+c3 2 22 / 3 −32+c3

1 y1 y3 15 2 22 / 3 −32+c3

2 y1
3 6+c/2 s−2+cd 1 −1+c

2 y1 y2 14+c/−2+c 2 −2+c

2 y1
4 −s−44−28c+c2d/4 s−2+cd2 Î2 −2+c2

2 y1
2 y2 −2 s256+304c−112c2−14 c3+c4d/ s−2+cd2 s−8+c2d 2 −4+c2

2 y2
2 −3 s−104+c2d/−8+c2 2 Î2 −8+c2

2 y1 y3 240/−8+c2 2 Î2 −8+c2

3 y1
4 10+c/6 s−2+cd 1/2 −s1/2d+c

3 y1
2 y2 18+c/−2+c 1 −1+c

3 y2
2 16/−2+c 2 −2+c

3 y1 y3 22+c/−2+c 2 −2+c
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D2,s3,0,. . .d =
c2

8
sc − 1d

After reduction and factorization, the numerator becomes

N2,s3,0,. . .d =
s− 1 +cd c3 s6 + cd

16 s− 4 +cd s− 2 +cd
,

canceling thec−1 at the denominator. We have pursued the
same procedure up to orderb7 and considered the 175 pos-
sible terms. In 50 cases, we hadccrit.,2. In each of these 50
cases, we observed a complete cancellation ofTl,iscd. It
seems thus reasonable to conjecture thatQl,iscd has no poles
for ucu,2. If this conjecture is correct, dimensional regular-
ization provides a unique continuous expression for the co-
efficients for anyc with ucu,2 and the model is “solvable”
using the recursion for the coefficients given by Eq.s26d.
Note that for values ofc real and positive, the correspon-
dence c=21−2/D implies that the interval 0,c,2 corre-
sponds to 0,D, +`. The conjecture implies that for any
value ofc in this interval, we can construct analytical expres-
sion of an,l swhich contains all the thermodynamical quanti-
tiesd in terms of a0,l swhich depends on the initial energy
densityd:

an,l = sR−1dl
rhrfl1

ny1sa0d,l2
ny2sa0d, . . .g. s37d

The initial values ofysa0d have a simple interpretation dis-
cussed in Sec. VIII.

V. THE CONNECTED PARTS

The generating function of the connected parts of the av-
erage values of the total field reads

lnfRnskdg = an,1
c k2 + an,2

c k4 + ¯ , s38d

with

an,l
c = o

i:I1sid=l

s− 1dI0sid−1fI0sid − 1g ! p
m

am
im

im!
. s39d

We repeat that we are working exclusively in the HT phase
and that we do not need to subtract powers of the magneti-
zation. Using Eq.s14d and the construction discussed in the
previous section, we can then calculatean,l

c synd. In addition,
we have

an,l
c = s− bdl 1

2l!
S c

4
DlnKS o

2nsites

fxD2lLc
, s40d

with the connected part of the average valuesklc defined in
the usual way. For instance

an,2
c = an,2 − s1/2dan,1

2 = s− bd2 1

4!
S c

4
D2n

kso2nsites
fxd4lc

with

KS o
2nsites

fxD4Lc
=KS o

2nsites

fxD4L − 3KS o
2nsites

fxD2L2
.

s41d

We define the finite volume susceptibility and their analog
for the higher order derivatives of the free energy(zero mo-
mentum renormalized couplings),

xn
sqd ;

kso2nsites
fxdqlc

2n . s42d

We restrict our considerations to the set of initial values such
that the infinite volume limit ofxn

s2ld exists and is finite for
every positivel. This means that we are not at another criti-
cal point or more generally not on a critical hypersurface at
the boundary of the HT phase. We emphasize that the exis-
tence of the infinite volume limit requires 0,c,2. For
c.2, the energy of a constant field configuration scales
faster than the number of sites and the model has no interest
from a statistical mechanics point of view.

In the following, we assume that the initial valuesa0,l are
such that

lim
n→`

xn
sqd = xsqd s43d

is finite. From Eq. s40d, it is then clear that forn large
enough, we have the leading scaling

an,l
c ~ F2S c

4
DlGn

= lsld
n . s44d

It is thus tempting to find a simple relationship betweenan,l
c

and yn,l. Indeed, such relation can be found at lowest non-
trivial order from Eq.s32d which implies that

al
c = yl + Osbl+1d. s45d

This can be seen either by using the Möbius inversion for-
mula f24g

yl = o
i:I1sid=l

s− 1dI0sid−1 3 fI0sid − 1g !

3 p
m
S o

r :I1sr d=m

p j
yj

r j

r j!
D im

1

im!
, s46d

or more simply by noticing that

eol=1

`
ylk

2l
= o

r
k2I1sr dp

j

yj
r j

r j!
. s47d

Similar formulas are used in multiparticle scattering theory
f25,26g.

Equation(45) means that there are no nonlinear contribu-
tions of orderbl to al

c. For instance, there are noy1
3 or y1y2

terms ina3
c. This is expected because the nonlinear terms of

orderbl scale faster thanyl, (assuming 0,c,2). We we say
that a term “scale faster,” we mean that it goes to zero at a
slower rate whenn becomes large. In general, at each RG
step, a termpm ym

im of orderbl is multiplied by
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2I0sidS c

4
Dl

. lsld = 2S c

4
Dl

.

The strict inequality comes from the fact that for the nonlin-
ear termsI0sid.1. It is thus clear that nonlinear terms of
orderbl would spoil the HT scaling of Eq.s44d and contra-
dict the existence of a infinite volume limit.

For higher order terms, the sign of the denominatorDl,i
introduced in Eq.(27) tells us whether or not the term scales
faster or slower than the linear term. With our sign conven-
tion, c.ccrit.sl , id, meansDl,i ,0 and the term spoils the HT
scaling Eq.(44). Since the coefficients are rational functions
of c, they cannot vanish suddenly whenc becomes larger
than ccrit.sl , id. Consequently if 0,ccrit.sl , id,2, the coeffi-
cient of the corresponding term is expected to vanish identi-
cally.

We have checked that this argument is consistent with our
previous explicit calculations. We have used Eqs.(39) and
(14) and the already calculated coefficients in Eq.(22) to
calculate

al
c = yl + o

i:I1sid.l

tl,iy1
i1y2

i2 . . . , s48d

up to order 7. For all the 50 terms with 0,ccrit.,2, we
found that the correspondingtl,i are identically zero.

VI. THE HT PHASE

In the preceding section, we have argued(and checked
explicitly up to order 7) that terms that scale faster than the
linear term forccrit.,c,2 have a zero coefficient. In this
section, we discuss more carefully some aspects of the argu-
ment and explain that having such terms nonzero would re-
sult in serious inconsistency.

First of all, the existence of a HT phase is well estab-
lished. The existence of a infinite volume limit[22] and the
absence of spontaneous magnetization for sufficiently high
temperature[8] can be shown rigorously for 0,c,2 and a
Ising measure. Bounds on the free energy density[23], can
be established for 0,c,2 and measures with a compact
support. The argument should also apply to measures that
can be well approximated by measures with a compact sup-
port {see Eq.(3) and the argument[27] that for Landau-
Ginzburg measures, the restriction toufu,fmax leads to ex-
ponentially controllable errors}.

It is thus reasonable to assume that there exists some
neighborhood of the HT fixed point where the infinite vol-
ume limit of the susceptibility and higher order derivatives
[see Eq.(43)] exist. Terms scaling faster than the linear term
seem to contradict the existence of these infinite volume lim-
its. However, we should exclude the possibility that several
terms(scaling identically) cancel each others. The existence
of universal ratio of amplitudes means that we cannot in
general pick arbitrary initial values for the scaling variables.
However, such constraints apply for large values of the HT
scaling variables. On the other hand, for arbitrarily small
values of the HT scaling variables, one should be able to
make independent variations of each variable while staying
in the HT phase. This prevents the fine tuning required to

obtain cancellations. The HT fixed pointR!=1 corresponds
to a local measureWsfd~dsfd for which the correlations are
zero. It is intuitively clear that by taking measures narrowly
peaked at zero, one can avoid long range correlations. This
continuity argument can probably be made rigorous by using
Banach spaces as in Refs.[6,22]. We conclude that the coef-
ficients tl,i in Eq. (48) of the terms with 0,ccrit.sl , id,2
must vanish identically.

VII. THE ABSENCE OF POLES FOR 0 ,c,2

We are now in position to show that the small denomina-
tor problem can be evaded for anyc such that 0,c,2 and
that the solution of the RG flows problem suggested in Eq.
(37) can be constructed safely order by order. In Sec. V, we
have constructed theal

c in terms of the previously calculated
al. However we could have proceeded directly, writingan+1,l

c

in terms of thean,l
c :

an+1,l
c = Ml

kan,k
c + o

k+qùl
vl

kqan,k
c an,q

c + ¯ . s49d

The coefficientsvl
kq and the higher order ones can be ob-

tained by using the expansion of Eq.s38d in the logarithm of
Eq. s6d and expanding order by order inan

c. The series does
not terminate. The linear transformation is the same as before
becauseal

c andal only differ by nonlinear terms. Using

an,l
c = Rl

rhn,r
c , s50d

we obtain

hn+1,l
c = lsldhn,l

c + o
k+qùl

wl
kqhn,k

c hn,q
c + ¯ . s51d

We then introduce the expansion

hl
c = yl + o

i:I1sid.l

sl,i
c p

m

ym
im, s52d

and obtain

sl,i
c =

Nl,i
c

Dl,i
. s53d

with Nl,i
c given by a formula similar to Eq.s26d, except that it

does not terminate. A detailed analysis shows that the two
formulas have in common that the numerator depends only
on coefficients of strictly lower orders inb, and Eq.s53d can
be used order by order to construct thesl,i

c for generic values
of c.

SinceR−1 is upper triangular, we see from Eq.(50) that
hl

c is equal toal
c plus terms which go to zero faster. Conse-

quently, for largen, the leading scaling is

hn,l
c ~ lsld

n . s54d

Following reasonings used before, this implies that terms in
the expansion Eq.s52d that scale faster thanyl for any
0,c,2 should have a vanishing coefficient. In other words:
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0 , ccrit.sl,id , 2 ⇒ sl,i
c = 0.

Given the specific form of thesl,i
c given in Eq.s53d, the hl

c

have no poles for 0,c,2. Theal
c being linear combinations

of hl
c and theal being linear combinations of products ofal

c,
we conclude that the expansion of theal in terms of the
scaling variables have also no poles for 0,c,2, in agree-
ment with the conjecture stated in Sec. VI.

Again we see that there exists a unique continuous defi-
nition of the scaling variables that can be used at particular
values ofc where the denominator is exactly zero. From a
practical point of view, the calculation at fixedc of thesl,i

c is
easier than the calculation of thesl,i, because no limit needs
to be taken explicitly. Thesl,i

c being rational function ofc
they cannot be zero everywhere except at isolated values.
Consequently, we can set to zero thesl,i

c havingccrit.sl , id,2
even at values ofc whereDl,i =0.

VIII. THE INITIAL VALUE PROBLEM

We now return to Eq.(37). In order to complete our so-
lution of the problem, namely, expressingan in terms of their
initial valuesa0, we need to calculateysa0d.

Before doing this, we want to show that the initial values
y0 have a very simple interpretation. We have learned in the
preceding sections thatyn,l is the only leading term ofan,l

c

when n becomes large. If at a given 0,c,2, a nonlinear
terms scales exactly likeyn,l, then by increasingc slightly
(but keepingc,2), we can make this term dominant in con-
tradiction with the existence of the infinite volume limit.
Consequently,

lim
n→`

ll
−nan,l

c = lim
n→`

ll
−nyn,l = y0,l . s55d

From Eq.s40d, we see that

y0,l = s− bdl 1

2l!
xs2ld. s56d

This means that the infinite volume limit of the susceptibility
and of the higher derivatives of the free energy density com-
pletely determine the RG flows in the HT phase. This also
means that the calculation ofy0,l given a0,l is nontrivial far
away from the HT fixed point. However, we can take advan-
tage of the fact that

lsld
−nyn,l = y0,l s57d

to estimatey0,l using expansions valid at intermediate values
of n.

We now discuss the inversion question. We need to deter-
mine the coefficientsr l,i of the expansion

yl = hl + o
i

r l,ip
m

hm
im. s58d

This can be done by replacing theyl appearing in the expan-
sion ofhl in Eq. s22d by Eq. s58d. This yields an equation of
the form

r l,i + sl,i + Xl,i = 0,

with Xl,i linear in s and multilinear inr of strictly lower
order. One can then constructr l,i order by order without ever
creating a pole in the range 0,c,2. At lowest nontrivial
order, we have

hl = o
i:I1sid=l

s− 1dI0sid−1fI0sid − 1g ! p
m

ym
im

im!
+ Osbl+1d.

s59d

A more detailed analysis shows that for higher orders

r l,i = S c

c − 4
DI1sid−l

Yl,iscd, s60d

with Yl,iscd having poles only for 2øc,4. The values of
Yl,iscd up to order 4 are given in Table II.

IX. THE HT EXPANSION

A simple application of the method presented here is the
calculation of the high-temperature expansion at finite vol-
ume. As a simple example, we consider the first order cor-
rection to the susceptibility for a Ising measurefR0skd
=cossÎbkdg. Using the results found in the preceding sec-
tions, we obtain

xn
s2d =

− 2

b
an,1S c

4
Dn

=
− 2

b
Fy0,1+

2c

2 − c
S c

2
Dn

sy0,1d2

+
6c

4 − c
S c

4
Dn

y0,2G + Osb2d

; 1 + bb1,n + Osb2d. s61d

Using a0,1=−b /2 anda0,2=b2/24, we obtain

y0,1= −
b

2
−

b2c

4s4 − cd
−

b2cs2 + cd
4s4 − cds2 − cd

y0,2= −
b2

12
,

and consequently

b1,n =
2c

s4 − cds2 − cd
−

c

2 − c
S c

2
Dn

+
c

4 − c
S c

4
Dn

. s62d

This is in agreement with results obtainedf19g using graphi-
cal methods.

X. RG INVARIANTS

In Hamiltonian mechanics, integrable systems withq de-
grees of freedom haveq constants of motions andq periodic
variables with independent periods depending on the con-
stants of motion. In the present case, time is discrete and
exponential decays replace the quasiperiodic behavior. For a
truncation of dimensionlmax, it is nevertheless possible to
constructlmax−1 constants of motion:
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Gl ; − s2ld !
yn,l

s− 2yn,1dsl−1dsD/2d+l . s63d

These quantities aren independent and we call them RG
invariants. We can calculate them atn=0. Using Eq.s56d,
we obtain

Gl = s− 1dl+1 bsD/2ds1−ldxs2ld

sxs2ddsl−1dsD/2d+l . s64d

We can also calculate them at large enough values ofn
where the HT expansion works well. The minus sign has
been introduced in order to haveGl .0 for D=3.

We now concentrate on the unstable direction of Wilson’s
fixed point. We set the relevant scaling variable associated
with this fixed point to a valueu which becomes our coor-
dinate along the unstable direction and we set all the irrel-
evant ones to zero. We callGlsud the corresponding value of
the ratio. Given thatu is a scaling variable and thatGl is RG
invariant, we have

Glslwud = Glsud, s65d

with lw the eigenvalue corresponding to the unstable direc-
tion of Wilson’s fixed point. Consequently, we have the Fou-
rier expansion:

Glsud = o
r

Al,ru
irv, s66d

with

v =
2p

ln lw
. s67d

If the oscillatory terms are very small, as noticed in Refs.
f16,28,29g, we have the approximate universal ratios

Glsud . Al,0. s68d

These constants can be calculated in an intermediate region
where the expansions in both scaling variables are validf7g.

XI. CONCLUSIONS

We have shown that the scaling variables corresponding
to the HT fixed point of Dyson’s hierarchical model can be
constructed order by order without small denominator prob-
lems. The ambiguity noticed before[17] for calculations at
fixed values ofc can be raised by requiring the continuity in
c. Practical calculations at finitec are most easily done by
following the explicit construction sketched in Sec. VII for
the connected part where no complicated limit is required.
The remaining poles for 2øcø4 reflect the degeneracy of
the linear spectrum atc=4 or the fact that some finite size
corrections become leading effects for some value of 2
øc,4 (where the infinite volume limit does not exist).

We have solved the linear problem in compact form but at
this point no compact form is available for the nonlinear
problem. Even though we have “constants of motion”(the
RG invariants), we do not have simple expressions for them

TABLE II. Values of Yl,iscd, andTl,iscd defined in the text.

l pm hm
im Yl,iscd −Tl,iscd

1 h1
2 −s 2+c

−2+c
d −2+c

1 h1
3 160−224c+44c2+4c3+c4

s−2+cd2s−8+c2d
−4+c2

1 h1h2
3s−40+c2d

−8+c2
−8+c2

1 h1
4 −s−229376+638976c−364544c2−160768c3+109056c4+11648c5+1664c6−5952c7+392c8+148c9+6c10+c11

s−2+cd3s−8+c2ds−32+c3ds−16+c3d d −8+c3

1 h1
2h2

−6s24576−53248c−19456c2+10496c3+3968c4+800c5−576c6−40c7+2c8+c9d

s−2+cds−8+c2ds−32+c3ds−16+c3d
−16+c3

1 h2
2 −1536

−32+c3 −32+c3

1 h1h3 −15 −32+c3

2 h1
3 6+c

−2+c
−1+c

2 h1h2 −s 14+c
−2+c

d −2+c

2 h1
4 −s608−1504c+356c2+36c3+3c4d

2s−2+cd2s−8+c2d
−2+c2

2 h1
2h2

−2s−704+1216c−316c2−20c3+c4d

s−2+cd2s−8+c2d
−4+c2

2 h2
2 3s−104+c2d

−8+c2
−8+c2

2 h1h3
−240
−8+c2 −8+c2

3 h1
4 −s 10+c / −2+cd −s 1

2
d+c

3 h1
2h2

2s18+cd

−2+c
−1+c

3 h2
2 −16

−2+c
−2+c

3 h1h3 −s 22+c
−2+c

d −2+c
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(as the integrals of integrable models). The question of the
convergence of the series remains to be addressed and should
result in the construction of the boundary of the HT phase.
Finally, it would be desirable to extend the method to models
with hÞ0. One way to achieve this goal would be to de-
velop methods to systematically improve the hierarchical ap-
proximation.
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